Atomic Commitment Across Blockchains

Victor Zakhary, Divyakant Agrawal, Amr El Abbadi
victorzakhary,divyagrawal,elabbadi@ucsb.edu
University of California Santa Barbara
Open Blockchain Landscape

• Thousands of Blockchains and tokens
• Exchanges to trade tokens for USD
• Direct token transactions in one blockchain
• Direct token transactions across blockchains, how?
• Cross-chain transactions
Cross-ChainTransaction Example

Atomic Cross-Chain Commitment Protocol

X bitcoins → Y ethers → X bitcoins

Y ethers → X bitcoins → Y ethers
Atomic Swap[Nolan’13, Herlihy’18]

- Alice wants to trade Bitcoin for Ethereum with Bob
Atomic Swap [Nolan’13, Herlihy’18]

Alice wants to trade Bitcoin for Ethereum with Bob

- Create a secret s
- Calculate its hash $h = H(s)$
Atomic Swap[Nolan’13, Herlihy’18]

• Alice wants to trade X Bitcoin for Y Ethereum with Bob

SC₁ Move X bitcoins to Bob if
Bob provides secret $s \mid h = H(s)$

Refund SC₁ to Alice if Bob does not execute SC₁ before 48 hours
Atomic Swap[Nolan’13, Herlihy’18]

- Alice wants to trade X Bitcoin for Y Ethereum with Bob
Atomic Swap [Nolan’13, Herlihy’18]

• Now, h is announced in Bitcoin blockchain and made public

SC₂ Move Y Ethereum to Alice if Alice provides secret s | h = H(s)

Refund SC₂ to Bob if Alice does not execute SC₂ before 24 hours
Atomic Swap [Nolan’13, Herlihy’18]

Ethereum blockchain

Bob

Bitcoin blockchain

Alice
Atomic Swap Example [Nolan’13, Herlihy’18]

Alice reveals the secret to Bob’s contract and claims the Y ether.

Supposedly, Bob takes the secret, reveals it to Alice’s contract and claims the X bitcoins.

\[e.g., \Delta = 12 \text{hr} \]
What can go wrong?

Alice - Bob in Bitcoin

$\Delta = 12 \text{hr}$

Bob - Alice in Ethereum

If Bob fails or suffers a network denial of service attack for a Δ, Alice’s contract will expire and Bob will lose his X bitcoins.

Atomicity Violation

X bitcoins are refunded to Alice any time after the contract expires.

Y ethers

X bitcoins

e.g., $\Delta = 12 \text{hr}$
Atomicity Violation

• Using timelocks leads to **Atomicity violation**

• **Liveness over Safety**

• **Our Atomicity-based Approach:**
 • The decision of both transactions should be made atomic
 • Once the decision is taken, both transactions either commit or abort
 • A transaction cannot commit unless a commit decision is reached
 • A transaction cannot abort unless an abort decision is reached
Building block: Cross-Chain Verification

• How can miners of one blockchain:
 • Verify a transaction in another blockchain?
 • Without maintaining a copy of this other blockchain.
Need to verify that TX_1 is actually in verified blockchain.

Verified Blockchain (B)

Verifier Blockchain (A)

TX_1 Evidence
Building block: Cross-Chain Verification

• Verification process:
 • Each header includes the hash of the previous header
 • The proof of work of each header is correct
 • TX\(_1\) is correct
 • TX\(_1\) is buried under d blocks

• The cost of generating evidence:
 • Choose d to make this cost > the value transacted in TX\(_1\)
 • If true, a malicious user has no incentive to create a fake evidence
Atomic Commitment Across Blockchains

• AC3WN: Atomic Cross Chain Commitment using Witness Network
• Use another blockchain to witness the Atomic Swap
• The witness blockchain decides the commit or the abort of a swap

Once a decision is made:
 • All sub-transactions in the swap must follow the decision
 • Achieves atomicity, either all committed or all aborted

• Cross chain verification is leveraged twice
 • Miners of the witness network verify the publishing of contracts in asset blockchains
 • Miners of assets’ blockchains verify the decision made in the witness network
Protocol Sketch

• Deploy a contract SC_w in the witness network with state *Published* (P)
• SC_w has a header of a block at depth d of all blockchains in the swap
Protocol Sketch Cont’d

• Participants deploy their contracts in the corresponding blockchains
• Participants add the header of SC_w to their contracts
Protocol Sketch Cont’d

- Participants submit **evidence** of publishing the smart contracts in **Assets Blockchains**
- If all contracts are published and correct, \(SC_w \)’s state is altered to redeem (RD)

\[
SC_w \quad \{ \begin{array}{c} S=P \\ S=RD \end{array} \}
\]
• Participants submit evidence of Redeem State (RD) from the Witness Blockchain to the Assets Blockchains.

• After evidence verification, participants redeem their assets from the Assets Blockchains.
Atomic Commitment Across Blockchains

• SCw’s state determines the commit (RD) or the abort (RF) decision
• Once SCw’s state is altered and the block is buried under d blocks:
 • All sub-transactions must follow this decision
 • None of the sub-transactions can decide on a different decision
• Even if a participant fails or faces a network denial of service:
 • When the participant recovers, the evidence of the decision still exists
 • This evidence can be used to redeem or refund the contracts
• The only way to violate atomicity is to fork the witness blockchain
• Economic incentives prevent this attack
• Any protocol is prone to fork attacks
AC3WN vs Atomic Swap: Latency

The overall Atomic Cross Chain Transaction latency in Δs as the graph diameter, $\text{Diam}(D)$, increases.
AC3WN vs Atomic Swap: Cost ($)

- Deployment of the witness network contract
- Evidence validation execution cost at the witness network
Summary

• AC3WM, the first safe Atomic Cross Chain Commitment Protocol
• Constant latency regardless of the swap graph size
• Slightly more deployment cost overhead ($)